ar X iv : 1 61 1 . 01 35 5 v 1 [ m at h . FA ] 4 N ov 2 01 6 Disjointness preserving C 0 - semigroups and local operators on ordered Banach spaces
نویسنده
چکیده
We generalize results concerning C0-semigroups on Banach lattices to a setting of ordered Banach spaces. We prove that the generator of a disjointness preserving C0-semigroup is local. Some basic properties of local operators are also given. We investigate cases where local operators generate local C0-semigroups, by using Taylor series or Yosida approximations. As norms we consider regular norms and show that bands are closed with respect to such norms. Our proofs rely on the theory of embedding pre-Riesz spaces in vector lattices and on corresponding extensions of regular norms.
منابع مشابه
ar X iv : 0 71 1 . 10 06 v 1 [ m at h . FA ] 7 N ov 2 00 7 CONTINUOUS EXTENSION OF A DENSELY PARAMETERIZED
Let S be a dense sub-semigroup of R+, and let X be a separable, reflexive Banach space. This note contains a proof that every weakly continuous contractive semigroup of operators on X over S can be extended to a weakly continuous semigroup over R+. We obtain similar results for nonlinear, non-expansive semigroups as well. As a corollary we characterize all densely parametrized semigroups which ...
متن کاملar X iv : m at h / 92 01 23 0 v 1 [ m at h . FA ] 2 4 Ju l 1 99 1 Banach Spaces with Property ( w ) Denny
In this paper, we give two examples, both of which answer the question in the negative. Both examples are James type spaces considered in [1]. They both possess properties stronger than Property (w). The first example has the property that every operator from the space into the dual is compact. In the second example, both the space and its dual have Property (w). In the last section, we conside...
متن کاملar X iv : 0 90 6 . 01 60 v 1 [ m at h . FA ] 3 1 M ay 2 00 9 OPERATOR MACHINES ON DIRECTED GRAPHS PETR
We show that if an infinite-dimensional Banach space X has a symmetric basis then there exists a bounded, linear operator R : X −→ X such that the set A = {x ∈ X : ||R(x)|| → ∞} is non-empty and nowhere dense in X . Moreover, if x ∈ X \ A then some subsequence of (R(x)) n=1 converges weakly to x. This answers in the negative a recent conjecture of Prǎjiturǎ. The result can be extended to any Ba...
متن کاملar X iv : m at h / 06 11 77 4 v 1 [ m at h . FA ] 2 5 N ov 2 00 6 MODULE EXTENSIONS OF DUAL BANACH ALGEBRAS
In this paper we define the module extension dual Banach algebras and we use this Banach algebras to finding the relationship between weak−continuous homomorphisms of dual Banach algebras and Connes-amenability. So we study the weak∗−continuous derivations on module extension dual Banach algebras.
متن کاملar X iv : 1 50 2 . 06 47 2 v 1 [ m at h . R A ] 8 N ov 2 01 4 Gröbner - Shirshov bases and PBW theorems ∗
We review some applications of Gröbner-Shirshov bases, including PBW theorems, linear bases of free universal algebras, normal forms for groups and semigroups, extensions of groups and algebras, embedding of algebras.
متن کامل